2025年高中数学的教案
教案可以帮助教师从学生实际情况出发,面向大多数学生,调动学生学习的积极性。优秀的2025年高中数学的教案是怎么写的?小编给大家整理了2025年高中数学的教案,希望对大家有所帮助。
2025年高中数学的教案篇1
[三维目标]
一、知识与技能:
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系
2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想
3、了解集合元素个数问题的讨论说明
二、过程与方法
通过提问汇总练习提炼的形式来发掘学生学习方法
三、情感态度与价值观
培养学生系统化及创造性的思维
[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1、集合的含义与特征
2、集合的表示与转化
3、集合的基本运算
2025年高中数学的教案篇2
一、单元教学内容
(1)算法的基本概念
(2)算法的基本结构:顺序、条件、循环结构
(3)算法的基本语句:输入、输出、赋值、条件、循环语句
二、单元教学内容分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
三、单元教学课时安排:
1、算法的基本概念3课时
2、程序框图与算法的基本结构5课时
3、算法的基本语句2课时
四、单元教学目标分析
1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。
3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。
4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
五、单元教学重点与难点分析
1、重点
(1)理解算法的含义
(2)掌握算法的基本结构
(3)会用算法语句解决简单的实际问题
2、难点
(1)程序框图
(2)变量与赋值
(3)循环结构
(4)算法设计
六、单元总体教学方法
本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
七、单元展开方式与特点
1、展开方式
自然语言→程序框图→算法语句
2、特点
(1)螺旋上升分层递进
(2)整合渗透前呼后应
(3)三线合一横向贯通
(4)弹性处理多样选择
八、单元教学过程分析
1、算法基本概念教学过程分析
对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。
2、算法的流程图教学过程分析
对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。
3、基本算法语句教学过程分析
经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,
4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
九、单元评价设想
1、重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2、正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法
2025年高中数学的教案篇3
一、教材分析
1.教材所处的地位和作用
在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
2.教学的重点和难点
重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。
难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。
二、教学目标分析
1、知识与技能:
(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
三、教学方法与手段分析
1、教学方法:本节课我主要采用启发探究式的教学模式。
2、教学手段:利用多媒体技术优化课堂教学
四、教学过程分析
㈠创设情境、引入新课
情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?
预设学生回答:
⑴采用简单随机抽样方法(抽签法)
⑵采用简单随机抽样方法(随机数表法)
教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题)
「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。
情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?
「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。
㈡操作实践、了解新知
教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。
「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。
问题1:抛一枚质地均匀的硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?
思考:随着模拟次数的不同,结果是否有区别,为什么?
「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。
问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?
(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?
「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。
问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?
(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?
「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;
⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。
㈢讲练结合、巩固新知
问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?
问1:能用古典概型的计算公式求解吗?
你能说明一下这为什么不是古典概型吗?
问2:你如何模拟每一天下雨的概率为40?
「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。
⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。
归纳步骤:第一步,设计概率模型;
第二步,进行模拟试验;
方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;
方法二:(随机模拟方法--计算机模拟)
第三步,统计试验的结果。
课堂检测将一枚质地均匀的硬币连掷三次,出现"2个正面朝上、1个反面朝上"和"1个正面朝上、2个反面朝上"的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。
「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。
㈣归纳小结
(1)你能归纳利用随机模拟方法估计概率的步骤吗?
(2)你能体会到随机模拟的优势吗?请举例说说。
「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。
㈤布置练习:
课本练习3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
[内容结束]
2025年高中数学的教案篇4
高二数学《椭圆的几何性质1》教学反思
近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:
一是能有效地增大每一堂课的课容量;
二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;
三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;
四是有利于对整堂课所学内容进行回顾和小结。
在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的.掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。
其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。
不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
七、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
2025年高中数学的教案篇5
在预习教材中的例4的基础上,证明:若分别是椭圆的左、右焦点,则椭圆上任一点p()到焦点的距离(焦半径),同时思考当椭圆的焦点在y轴上时,结论如何?(此题意图是引导学生去进一步探究,为进一步研究椭圆的性质做准备)
本堂课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。由教师点拨、指导,学生研究、合作、体验来完成。
本节课借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习(兴趣是前提)。例如导入,通过“神州五号”这样一个人们关注的话题引入,有利于激发学生的兴趣。再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,变静态教学为动态教学。在研究范围这一性质时,课前设计中,只要学生能根据不等式知识解出就可以了,但学生采用了多种方法研究,这时教师没有打断他的思路,而是引导帮助他研究,鼓励学生创新,从而也实现了以学生为主,为学生服务。
在离心率这一性质的教学中,充分利用多媒体手段,以轻松愉悦的动画演示,化解了知识的难点。
但也有不足的地方:在对具体例子的观察分析中,设计的问题过于具体,可能束缚了学生的思维,还没有放开。还有就是少讲多学方面也是我今后教学中努力的方向。
感悟:新课堂是活动的课堂,讨论、合作交流可课堂,德育教育的课堂,应用现代技术的课堂,因此新教育理念、新课改下的新课堂需要教师和学生一起来培育。
2025年高中数学的教案篇6
本节课是《等比数列的前n项和》的第一课时,学生在学习了等比数列的概念、等差与等比数列的通项公式及等差数列的前n项和公式前提下学习的,对于本节课所需的知识点和探究方法都有了一定的储备。这节课我充分利用情境,激发学生兴趣,顺利导入本节课的内容。
本节课我用心准备、精心设计、潜心专研,是我上好这节课的前提。在教学过程中,我充分体现了教学目标,抓住了教学重点,解决了教学难点,更重要的是,全班学生心、神、情、与我深度融合。这节课的.内容是“等差数列的前n项和”与“等比数列”内容的延续,为学生后面学综合数列的求和做了铺垫,重点是推导等比数列的前n项和的公式以及公式的简单应用,难点是用错位相减法推导等比数列的前n项和公式以及公式应用中对q与1的讨论。本节课我注重从“知识传授”的传统模式转变为“以学生为主体”的参与模式,注重数学思想方法的渗透和良好的思维品质的养成,注重学生创造精神和实践能力的培养,这在一定的程度上,激活了学生的思维,但对教师的挑战也是不言而喻的,不仅要透彻理解教材的意图,还要有宽厚的知识积累和深厚的自学功底。
在等比数列求和的教学时,开始我给同学们说了一个故事,“在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。”为什么呢?同学们很好奇,于是有计算器的同学拿出了计算器,结果没有计算完,计算器就算不出来了。激发学生的兴趣,调动学习的积极性,于是引入主题,等比数列求和。
首先让学生回忆等差数列的求和公式的推导方法,结合自己的预习谈谈自己对课本上等比数列求和公式推导过程的理解,其本质是什么?这样做的目的是什么?此时教师根据学生们的讨论和展示,适时点拨,指出问题的关键。在用错位相减法推出等比数列前n项和公式过程中,做差后提醒同学们,接下来要做什么工作,注意什么,学生们自然知道分母不能为零,因而知道了等比数列前n项和公式是分情况讨论的,为什么会有公比为1和公比不为1两种情况。此时再提醒学生等差数列求和公式是一个公式的两种形式,而等比数列求和公式是两种不同情况下的公式。然后是对求和公式的简单应用。所以让学生经历等比数列前n项和公式的推导过程成了本节课的重点与难点,在改善学生的学习方式上,是让学生提出问题并解决问题来进行自主学习、合作学习与探究学习。
在教学环节上我利用小组合作学习、学生自主学习、小组讨论、学生展示、师生点评,教师总结升华,当堂检测等环节,有效地实现本节课的教学目标。在教学评价上我关注学生,不单纯看学生是否会解题,关键是看学生是否动脑,看学生的思维过程来肯定和鼓励,如在解决情景问题的过程中,学生跃跃欲试、情绪高涨、讨论激烈,可能会探究出多种解决方案,适时地鼓励与评价,使学生的进取心得到增强,是激发学生学习数学兴趣的有效途径。我通过对学生的评价,将知识点和思想方法又得到强化。
总之,这节课也有不足,容量大,知识丰富,渗透归纳与推理、错位相减法、从特殊到一般、类比推理、分类讨论等数学思想,对学生要求高。但通过课堂反应,教学效果好,这是我感到欣慰的地方。
2025年高中数学的教案篇7
考试要求重难点击命题展望
1.理解复数的基本概念、复数相等的充要条件.
2.了解复数的代数表示法及其几何意义.
3.会进行复数代数形式的四则运算.了解复数的代数形式的加、减运算及其运算的几何意义.
4.了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用.本章重点:1.复数的有关概念;2.复数代数形式的四则运算.
本章难点:运用复数的有关概念解题.近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题.在复习过程中,应将复数的概念及运算放在首位.
知识网络
15.1复数的概念及其运算
典例精析
题型一复数的概念
【例1】(1)如果复数(m2+i)(1+mi)是实数,则实数m=;
(2)在复平面内,复数1+ii对应的点位于第象限;
(3)复数z=3i+1的共轭复数为z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是实数1+m3=0m=-1.
(2)因为1+ii=i(1+i)i2=1-i,所以在复平面内对应的点为(1,-1),位于第四象限.
(3)因为z=1+3i,所以z=1-3i.
【点拨】运算此类题目需注意复数的代数形式z=a+bi(a,bR),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.
【变式训练1】(1)如果z=1-ai1+ai为纯虚数,则实数a等于
A.0B.-1C.1D.-1或1
(2)在复平面内,复数z=1-ii(i是虚数单位)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
【解析】(1)设z=xi,x0,则
xi=1-ai1+ai1+ax-(a+x)i=0或故选D.
(2)z=1-ii=(1-i)(-i)=-1-i,该复数对应的点位于第三象限.故选C.
题型二复数的相等
【例2】(1)已知复数z0=3+2i,复数z满足zz0=3z+z0,则复数z=;
(2)已知m1+i=1-ni,其中m,n是实数,i是虚数单位,则m+ni=;
(3)已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根为,实数k的值为.
【解析】(1)设z=x+yi(x,yR),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
则由复数相等的条件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
则由复数相等的条件得
所以m+ni=2+i.
(3)设x=x0是方程的实根,代入方程并整理得
由复数相等的充要条件得
解得或
所以方程的实根为x=2或x=-2,
相应的k值为k=-22或k=22.
【点拨】复数相等须先化为z=a+bi(a,bR)的形式,再由相等得实部与实部相等、虚部与虚部相等.
【变式训练2】(1)设i是虚数单位,若1+2i1+i=a+bi(a,bR),则a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,bR,i为虚数单位,则a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
题型三复数的运算
【例3】(1)若复数z=-12+32i,则1+z+z2+z3++z2008=;
(2)设复数z满足z+z=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一个周期内的和为0,且周期为3.
所以1+z+z2+z3++z2008
=1+z+(z2+z3+z4)++(z2006+z2007+z2008)
=1+z=12+32i.
(2)设z=x+yi(x,yR),则x+yi+x2+y2=2+i,
所以解得所以z=+i.
【点拨】解(1)时要注意x3=1(x-1)(x2+x+1)=0的三个根为1,,-,
其中=-12+32i,-=-12-32i,则
1++2=0,1+-+-2=0,3=1,-3=1,-=1,2=-,-2=.
解(2)时要注意zR,所以须令z=x+yi.
【变式训练3】(1)复数11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(20__江西鹰潭)已知复数z=23-i1+23i+(21-i)2010,则复数z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.计算容易有11+i+i2=12.
(2)A.
总结提高
复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z=a+bi(a,bR)代入原式后,就可以将复数问题化归为实数问题来解决.
2025年高中数学的教案篇8
数列的相关概念
1.数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2025年高中数学的教案篇9
1.如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。
(文)若为x轴上一点,求证:
2.如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。
3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且
⑴求椭圆C的离心率;
⑵若过A、Q、F三点的圆恰好与直线
l:相切,求椭圆C的方程.
4.设椭圆的离心率为e=
(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.
(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.
5.已知曲线上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线的方程;
(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.
6.已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n0时,求椭圆离心率的范围;
(Ⅱ)直线AB与⊙P能否相切?证明你的结论.
7.有如下结论:圆上一点处的切线方程为,类比也有结论:椭圆处的切线方程为,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为A、B.
(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积
8.已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
9.椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。
(1)求椭圆的方程;
(2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。
10.椭圆方程为的一个顶点为,离心率。
(1)求椭圆的方程;
(2)直线:与椭圆相交于不同的两点满足,求。
11.已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.
(1)若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.
12.已知直线与曲线交于不同的两点,为坐标原点.
(Ⅰ)若,求证:曲线是一个圆;
(Ⅱ)若,当且时,求曲线的离心率的取值范围.
13.设椭圆的左、右焦点分别为、,A是椭圆C上的一点,且,坐标原点O到直线的距离为.
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点,较y轴于点M,若,求直线l的方程.
14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).
(I)求抛物线方程;
(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当时,若P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.
15.已知动点A、B分别在x轴、y轴上,且满足AB=2,点P在线段AB上,且
设点P的轨迹方程为c。
(1)求点P的轨迹方程C;
(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q
坐标为求△QMN的面积S的最大值。
16.设上的两点,
已知,,若且椭圆的离心率短轴长为2,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
17.如图,F是椭圆(a0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BCBF,B,C,F三点确定的圆M恰好与直线l1:相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.
18.如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
19.如图,已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点.直线交椭圆于两不同的点.
20.设,点在轴上,点在轴上,且
(1)当点在轴上运动时,求点的轨迹的方程;
(2)设是曲线上的点,且成等差数列,当的垂直平分线与轴交于点时,求点坐标.
21.已知点是平面上一动点,且满足
(1)求点的轨迹对应的方程;
(2)已知点在曲线上,过点作曲线的两条弦和,且,判断:直线是否过定点?试证明你的结论.
22.已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
23.过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。
(1)用表示A,B之间的距离;
(2)证明:的大小是与无关的定值,
并求出这个值。
24.设分别是椭圆C:的左右焦点
(1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为试探究的值是否与点P及直线L有关,并证明你的结论。
25.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
26.如图所示,已知椭圆:,、为
其左、右焦点,为右顶点,为左准线,过的直线:与椭圆相交于、
两点,且有:(为椭圆的半焦距)
(1)求椭圆的离心率的最小值;
(2)若,求实数的取值范围;
(3)若,,
求证:、两点的纵坐标之积为定值;
27.已知椭圆的左焦点为,左右顶点分别为,上顶点为,过三点作圆,其中圆心的坐标为
(1)当时,椭圆的离心率的取值范围
(2)直线能否和圆相切?证明你的结论
28.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(I)证明:为定值;
(II)若△POM的面积为,求向量与的夹角;
(Ⅲ)证明直线PQ恒过一个定点.
29.已知椭圆C:上动点到定点,其中的距离的最小值为1.
(1)请确定M点的坐标
(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。
30.已知椭圆,直线与椭圆相交于两点.
(Ⅰ)若线段中点的横坐标是,求直线的方程;
(Ⅱ)在轴上是否存在点,使的值与无关?若存在,求出的值;若不存在,请说明理由.
31.直线AB过抛物线的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.
(I)求的取值范围;
(Ⅱ)过A、B两点分剐作此撒物线的切线,两切线相交于N点.求证:∥;
(Ⅲ)若P是不为1的正整数,当,△ABN的面积的取值范围为时,求该抛物线的方程.
32.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(Ⅰ)当时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
33.已知点和动点满足:,且存在正常数,使得。
(1)求动点P的轨迹C的方程。
(2)设直线与曲线C相交于两点E,F,且与y轴的交点为D。若求的值。
34.已知椭圆的右准线与轴相交于点,右焦点到上顶点的距离为,点是线段上的一个动点.
(I)求椭圆的方程;
(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.
35.已知椭圆C:(.
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;
(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求时满足的条件.
36.已知若过定点、以()为法向量的直线与过点以为法向量的直线相交于动点.
(1)求直线和的方程;
(2)求直线和的斜率之积的值,并证明必存在两个定点使得恒为定值;
(3)在(2)的条件下,若是上的两个动点,且,试问当取最小值时,向量与是否平行,并说明理由。
37.已知点,点(其中),直线、都是圆的切线.
(Ⅰ)若面积等于6,求过点的抛物线的方程;
(Ⅱ)若点在轴右边,求面积的最小值.
38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。
(1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。
(2)设F1、F2是椭圆的两个焦点,点F1、F2到直线
(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。
39.已知点为抛物线的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点.
(Ⅰ)求直线的方程;(Ⅱ)求的面积范围;
(Ⅲ)设,,求证为定值.
40.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
41.已知以向量为方向向量的直线过点,抛物线:的顶点关于直线的对称点在该抛物线的准线上.
(1)求抛物线的方程;
(2)设、是抛物线上的两个动点,过作平行于轴的直线,直线与直线交于点,若(为坐标原点,、异于点),试求点的轨迹方程。
42.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(Ⅰ)当时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,
与抛物线交于、,如果以线段为直径作圆,
试判断点与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
43.设椭圆的`一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(Ⅲ)若AB是椭圆C经过原点O的弦,MNAB,求证:为定值.
44.设是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于两点。
(Ⅰ)当时,若与的夹角为,求抛物线的方程;
(Ⅱ)若点满足,证明为定值,并求此时△的面积
45.已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足.
(Ⅰ)当点在轴上移动时,求点的轨迹的方程;
(Ⅱ)设、为轨迹上两点,且0,,求实数,
使,且.
46.已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。
(1)已知椭圆的离心率;
(2)若的最大值为49,求椭圆C的方程.
2025年高中数学的教案篇10
●知识梳理
函数的综合应用主要体现在以下几方面:
1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.
2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.
3.函数与实际应用问题的综合.
●点击双基
1.已知函数f(x)=lg(2x-b)(b为常数),若x[1,+)时,f(x)0恒成立,则
A.b1B.b1C.b1D.b=1
解析:当x[1,+)时,f(x)0,从而2x-b1,即b2x-1.而x[1,+)时,2x-1单调增加,
b2-1=1.
答案:A
2.若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式f(x+1)-12的解集是___________________.
解析:由f(x+1)-12得-2
又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,-1),
f(3)
答案:(-1,2)
●典例剖析
【例1】取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x0)的关系为
A.点P1、P2都在l的上方B.点P1、P2都在l上
C.点P1在l的下方,P2在l的上方D.点P1、P2都在l的下方
剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1
P1、P2都在l的下方.
答案:D
【例2】已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于xR,都有g(x)=f(x-1),求f(20__)的值.
解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),
故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=
g(x-3)=f(x-4),也即f(x+4)=f(x),xR.
f(x)为周期函数,其周期T=4.
f(20__)=f(4500+2)=f(2)=0.
评述:应灵活掌握和运用函数的奇偶性、周期性等性质.
【例3】函数f(x)=(m0),x1、x2R,当x1+x2=1时,f(x1)+f(x2)=.
(1)求m的值;
(2)数列{an},已知an=f(0)+f()+f()++f()+f(1),求an.
解:(1)由f(x1)+f(x2)=,得+=,
4+4+2m=[4+m(4+4)+m2].
∵x1+x2=1,(2-m)(4+4)=(m-2)2.
4+4=2-m或2-m=0.
∵4+42=2=4,
而m0时2-m2,4+42-m.
m=2.
(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).
2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.
an=.
深化拓展
用函数的思想处理方程、不等式、数列等问题是一重要的思想方法.
【例4】函数f(x)的定义域为R,且对任意x、yR,有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.从而有f(x)+f(-x)=0.
f(-x)=-f(x).f(x)是奇函数.
(2)证明:任取x1、x2R,且x10.f(x2-x1)0.
-f(x2-x1)0,即f(x1)f(x2),从而f(x)在R上是减函数.
(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.
深化拓展
对于任意实数x、y,定义运算x__y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1__2=3,2__3=4,并且有一个非零实数m,使得对于任意实数x,都有x__m=x,试求m的值.
提示:由1__2=3,2__3=4,得
b=2+2c,a=-1-6c.
又由x__m=ax+bm+cmx=x对于任意实数x恒成立,
b=0=2+2c.
c=-1.(-1-6c)+cm=1.
-1+6-m=1.m=4.
答案:4.
●闯关训练
夯实基础
1.已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上
A.单调递减且最大值为7B.单调递增且最大值为7
C.单调递减且最大值为3D.单调递增且最大值为3
解析:互为反函数的两个函数在各自定义区间上有相同的增减性,f-1(x)的值域是[1,3].
答案:C
2.关于x的方程x2-4x+3-a=0有三个不相等的实数根,则实数a的值是___________________.
解析:作函数y=x2-4x+3的图象,如下图.
由图象知直线y=1与y=x2-4x+3的图象有三个交点,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三个不相等的实数根,因此a=1.
答案:1
3.若存在常数p0,使得函数f(x)满足f(px)=f(px-)(xR),则f(x)的一个正周期为__________.
解析:由f(px)=f(px-),
令px=u,f(u)=f(u-)=f[(u+)-],T=或的整数倍.
答案:(或的整数倍)
4.已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.
解:a=sin2x-2sinx=(sinx-1)2-1.
∵-11,0(sinx-1)24.
a的范围是[-1,3].
5.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.
(1)求A;
(2)若BA,求实数a的取值范围.
解:(1)由2-0,得0,
x-1或x1,即A=(-,-1)[1,+).
(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.
∵a1,a+12a.B=(2a,a+1).
∵BA,2a1或a+1-1,即a或a-2.
而a1,1或a-2.
故当BA时,实数a的取值范围是(-,-2][,1).
培养能力
6.(理)已知二次函数f(x)=x2+bx+c(b0,cR).
若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.
解:设符合条件的f(x)存在,
∵函数图象的对称轴是x=-,
又b0,-0.
①当-0,即01时,
函数x=-有最小值-1,则
或(舍去).
②当-1-,即12时,则
(舍去)或(舍去).
③当--1,即b2时,函数在[-1,0]上单调递增,则解得
综上所述,符合条件的函数有两个,
f(x)=x2-1或f(x)=x2+2x.
(文)已知二次函数f(x)=x2+(b+1)x+c(b0,cR).
若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.
解:∵函数图象的对称轴是
x=-,又b0,--.
设符合条件的f(x)存在,
①当--1时,即b1时,函数f(x)在[-1,0]上单调递增,则
②当-1-,即01时,则
(舍去).
综上所述,符合条件的函数为f(x)=x2+2x.
7.已知函数f(x)=x+的定义域为(0,+),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:PMPN是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.
解:(1)∵f(2)=2+=2+,a=.
(2)设点P的坐标为(x0,y0),则有y0=x0+,x00,由点到直线的距离公式可知,PM==,PN=x0,有PMPN=1,即PMPN为定值,这个值为1.
(3)由题意可设M(t,t),可知N(0,y0).
∵PM与直线y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).
又y0=x0+,t=x0+.
S△OPM=+,S△OPN=x02+.
S四边形OMPN=S△OPM+S△OPN=(x02+)+1+.
当且仅当x0=1时,等号成立.
此时四边形OMPN的面积有最小值1+.
探究创新
8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1;
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2V1.
解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x,
V1=(4-2x)2x=4(x3-4x2+4x)(0
V1=4(3x2-8x+4).
令V1=0,得x1=,x2=2(舍去).
而V1=12(x-)(x-2),
又当x时,V10;当
当x=时,V1取最大值.
(2)重新设计方案如下:
如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.
新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=321=6,显然V2V1.
故第二种方案符合要求.
●思悟小结
1.函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强.
2.数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循.
●教师下载中心
教学点睛
数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题.
拓展题例
【例1】设f(x)是定义在[-1,1]上的奇函数,且对任意a、b[-1,1],当a+b0时,都有0.
(1)若ab,比较f(a)与f(b)的大小;
(2)解不等式f(x-)
(3)记P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范围.
解:设-1x1
0.
∵x1-x20,f(x1)+f(-x2)0.
f(x1)-f(-x2).
又f(x)是奇函数,f(-x2)=-f(x2).
f(x1)
f(x)是增函数.
(1)∵ab,f(a)f(b).
(2)由f(x-)
-.
不等式的解集为{x-}.
(3)由-11,得-1+c1+c,
P={x-1+c1+c}.
由-11,得-1+c21+c2,
Q={x-1+c21+c2}.
∵PQ=,
1+c-1+c2或-1+c1+c2,
解得c2或c-1.
【例2】已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.
2-y=-x++2.
y=x+,即f(x)=x+.
(2)(文)g(x)=(x+)x+ax,
即g(x)=x2+ax+1.
g(x)在(0,2]上递减-2,
a-4.
(理)g(x)=x+.
∵g(x)=1-,g(x)在(0,2]上递减,
1-0在x(0,2]时恒成立,
即ax2-1在x(0,2]时恒成立.
∵x(0,2]时,(x2-1)max=3,
a3.
【例3】在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f(n)关于时间n(130,nN__)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.
(1)求f(n)的表达式,及前m天的销售总数;
(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失.试问该服装在社会上流行的天数是否会超过10天?并说明理由.
解:(1)由图形知,当1m且nN__时,f(n)=5n-3.
由f(m)=57,得m=12.
f(n)=
前12天的销售总量为
5(1+2+3++12)-312=354件.
(2)第13天的销售量为f(13)=-313+93=54件,而354+54400,
从第14天开始销售总量超过400件,即开始流行.
设第n天的日销售量开始低于30件(1221.
从第22天开始日销售量低于30件,
即流行时间为14号至21号.
该服装流行时间不超过10天.
2025年高中数学的教案篇11
教学目的
1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。
2、培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。
3、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。
4、培养学生的合作意识和人际交往能力。
教学重点:
自主探究,掌握有序排列、巧妙组合的方法,并用所学知识解决实际生活的问题。
教学难点:
怎样排列可以不重复、不遗漏。
教学准备:
三只小动物的头像、两顶小雨伞图片、上锁的大门图片、纸条、实物投影仪等。
教学过程:
一、以故事形式引入新课
师:同学们,今天老师为大家带来了3只可爱的小动物,你们看它们是谁呀?小刺猬、小鸭和小鸡三个好朋友今天准备到企鹅博士家去做客呢,可是刚走了一半路,突然下起雨来,可是三只小动物只有两把伞,怎么办呢?
▲当学生在回答以上方法时,教师根据学生的回答把相应的动物头像帖在伞的下面。
师:大家想的办法都不错。的确,三只小动物都和你们一样试了上面这三种方法,可最后它们却选择了第③种方法,你们知道这是为什么吗?原来呀,当它们开始用前面两种方法时,可没走几步,小刺猬身上的刺就把小鸭和小鸡给刺疼了,所以只能选择第③种方法。
二、用开密码锁的方法进行数的排列活动
师:三只小动物到了企鹅博士家的数学城堡,却发现大门紧闭,门上还挂着一把锁。想要开锁就要找到开锁的密码。锁的密码提示是:请用数字1、2、3摆出所有的两位数,密码就是这些数从小到大排列中的第4个。──企鹅博士留。)
师:三只小动物都犯傻了,怎么办呢?同学们能不能给他们帮帮忙?
(生略)
师:那么我们就先每人拿出数字卡片,自己摆一摆,边摆边记,完成后,再小组内交流汇总,组长把整个小组摆出的数全写出来,当然重复的数字不用再写,然后全组同学一起把这些两位数从小到大排列起来,找到密码。
▲学生先自己摆、记,然后小组汇总、排列、交流,教师进行巡视并作适当指导。
师:你们找到密码了吗?是多少?你们是怎么找到的呢?
▲请几个小组的学生汇报找密码的过程。(略)
师:那么刚才你们摆两位数时,你摆出了几个呢?请用手势表示一下。
▲学生举手后,问没摆全的学生是怎么摆的,问全摆出的学生又是怎么摆的,学生出现的情况可能有:有把1、2组成12,然后再交换位置变成21;1、3组成13,交换位置后是31;2、3组成23,交换位置后是32。或者是随便摆一个看一个的。或者是这样摆12、13、23、21、31、32等。对这些摆法可让学生去比较一下,得出这两种方法都是可行的。
师:同学们都摆得很好,都动了脑筋,要想摆得快又不漏掉,我们应该选择一定的顺序去摆。
三、模拟小动物之间的握手来解决组合问题。
师:通过大家的帮忙,企鹅博士家的密码锁被打开了,欢迎各位小动物来闯关。
第一关:握握手
小明、小红、小华三个小朋友,如果每两人握一次手,三人一共握几次手。
▲学生猜好后,教师指出可以以四人小组为单位,三人模拟小动物握手,一人数握手的次数,找出答案。最后通过模拟得出:3人一共握了3次手。
师:排数时用了3个数字,握手时是3个学生,都是“3”,为什么出现的结果却不一样呢?
第二关:购买大比拼
如果要买一本5角的练习本,你有几种不同的付法呢?
先自己独立思考,然后在小组中交流一下,组长负责收集不同的方法,记录在表格中。
四、通过不同层次的练习,使知识得到巩固。
师:同学们说得都非常好。今天,我们不仅帮3只小动物解决了不少的问题,还学到了许多的数学知识,大家高兴吗?
师:那现在我们就带着这份兴奋的心情,来做几道题吧!
1、问有几种不同的穿法?
2、乒乓球大赛
小明、小红、小华、小丽想参加学校的乒乓球双打比赛,你认为他们有多少种不同的组合方式呢?
2025年高中数学的教案篇12
一、学习目标与自我评估
1 掌握利用单位圆的几何方法作函数 的图象
2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期
3 会用代数方法求 等函数的周期
4 理解周期性的几何意义
二、学习重点与难点
“周期函数的概念”, 周期的求解。
三、学法指导
1、 是周期函数是指对定义域中所有 都有,即 应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
四、学习活动与意义建构
五、重点与难点探究
例1、若钟摆的高度 与时间 之间的函数关系如图所示
(1)求该函数的周期;
(2)求 时钟摆的高度。
例2、求下列函数的周期。
(1) (2)
总结:(1)函数 (其中 均为常数,且的周期T= 。
(2)函数 (其中 均为常数,且的周期T= 。
例3、求证: 的周期为 。
例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,且
总结:函数 (其中 均为常数,且__的周期T= 。
例5、(1)求 的周期。
(2)已知 满足 ,求证: 是周期函数
课后思考:能否利用单位圆作函数 的图象。
六、作业:
七、自主体验与运用
1、函数 的周期为 ( )
A、 B、 C、 D、
2、函数 的最小正周期是 ( )
A、 B、 C、 D、
3、函数 的最小正周期是 ( )
A、 B、 C、 D、
4、函数 的周期是 ( )
A、 B、 C、 D、
5、设 是定义域为R,最小正周期为 的函数,若 ,则 的值等于 ( )
A、1 B、 C、0 D、
6、函数 的最小正周期是 ,则
7、已知函数 的最小正周期不大于2,则正整数
的最小值是
8、求函数 的最小正周期为T,且 ,则正整数的值是
9、已知函数 是周期为6的奇函数,且 则
10、若函数 ,则
11、用周期的定义分析 的周期。
12、已知函数 ,如果使 的周期在 内,求正整数 的值
13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的函数关系如图所示:
(1) 求该函数的周期;
(2) 求 时,该质点离开平衡位置的位移。
14、已知 是定义在R上的函数,且对任意 有成立,
(1) 证明: 是周期函数;
(2) 若 求 的值。
2025年高中数学的教案篇13
一、教材分析
《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
二、教学目标
知识与技能:
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。过程与方法:
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:
1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具
普通教学工具、多媒体工具(以上均为命题教学的准备)
2025年高中数学的教案篇14
1、教材分析:
集合是现代数学的基本语言,可以简洁、准确地表达数学内容。本节是让学生学会用集合的语言来描述对象,章末我们会用集合和对应的语言来描述函数的概念,可见它是今后数学学习的基础,也是培养学生抽象概括能力的重要素材。
2、教材目标:
根据素质教育的要求和新课改的精神,我确定教学目标如下:
①知识与技能:
(1)了解集合的含义与集合中元素的特征
(2)熟记常用数集符号
(3)能用列举、描述法表示具体集合
②过程与方法:让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.让学生通过观察、归纳、总结的过程,提高抽象概括能力。
③情感态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性.
3、教学重点、难点
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;说教法
1.学情分析
《集合的含义及表示》这一课时是学生进入高中阶段学习、接触到高中数学的第一堂课,它直接影响到了学生对高中阶段数学学习的认识;如果我们教学上过于草率,学生很容易对数学失去学习兴趣。再者,这是高中数学课程的第一章的第一课时,是整个高中数学的奠基部分,所以我们不仅要正确地传授知识,更要把握好教学的难度。如果传授得过于简单,那么学生容易麻痹大意,对今后的学习埋下隐患;如果讲得太深,那么学生会有畏难心理,也会对今后的学习造成影响。
2.方法选择
在教学中注意启发引导,通过预习学案的形式把知识问题化,通过实例引导学生观察归纳,上课组织学生分组讨论,让他们经历观察、猜测、推理、交流、反思的理性思维的基本过程,切实改变学生的学习方法。
说学法
让学生通过课前结合学案,阅读教材,自主预习,课上交流、讨论、概括,课后复习巩固三个环节,更好地完成本节课的教学目标。值得提出的是:集合作为一种数学语言,最好的学习方法是使用,所以应该多做转换练习,
说教学程序
(一)创设情境,揭示课题
军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主动参与的积极性。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)研探新知,建构概念
让学生阅读课本P2内容,让小组思考讨论,代表发言,师生共同补充答案它们的共同特征:它们都是指定的一组对象。这时我借此引入集合的概念,把一些元素组成的总体叫做集合,简称集,通常用大写字母A,B,C,?表示。把研究的对象称为元素,通常用小写拉丁字母a,b,c,?表示;
接下来,我引导学生把集合的涵义进行拓展,期间结合一些师生互动:我们班上的女生能不能构成一个集合,班上身高在1.75米以上的男生能不能构成一个集合,班上高的男生能不能构成一个集合??,通过身边这些大量例子,让学生了解集合的概念,并切实感受到学习集合语言的重要性。
对于集合元素的特征:确定性、互异性、无序性。我则在学生了解集合概念基础上,通过设置三个问题(1)班里个子高的同学能否构成一个集合?(2)在一个给定的集合中能否有相同的元素?(3)班里的全体同学组成一个集合,调整座位后这个集合有没有变化?调整后的集合和原来的集合是什么关系?让学生思考:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
这样设计将知识问题化,问题生活化,激发学生学习的主动性,引导学生归纳出集合中元素的三大特性,用简练的语言概括为——确定性、互异性、无序性用两集合相等的概念。
思考3:(1)设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
(2)对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?
(3)如果元素a是集合A中的元素,我们如何用数学化的语言表达?
(4)如果元素a不是集合A中的元素,我们如何用数学化的语言表达?用符号∈或?填空:
[设计说明]这几个问题比较简单,直接提问同学回答,并师生一起完善答案。通过问题的层层深入,目的是引导学生归纳出元素与集合的关系及表示方法。
反馈练习:
(1)设A为所有亚洲国家组成的集合,则
中国____A,美国____A,
印度____A,英国____A;
对于集合中常用的符号,我做了这样处理:简要介绍后,让学生用两三分钟的时间结合符号特点记忆。目的在于给学生一个信号:课堂上能消化的东西要及时记住。
2.集合的表示法:列举法和描述法
让学生自习阅读课本P3——P4的内容5-7分钟,接着让同学试着解决如下三个问题
(1)由大于10小于20的所有整数组成的集合;
(2)表示不等式x-7《3的解集;
(3)由1——20以内的所有素数组成的集合;
把集合的元素一一列举出来,并用花括号“{}”括起来表示的方法叫做列举法。用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
通过三个问题不仅检验了学生的自学效果,同时也让学生明白列举法和描述法两种方法各自的优缺点,更重要的是对集合的列举法和描述法的规范表达做进一步强调,最后,我带领学生分析了课本P4的例题,对集合的列举法和描述法的规范表达做进一
步的强调,让学生完成书上的习题,并请几个学生上台来演练,通过练习达到及时的反馈。
(四)归纳整理,整体认识
1.本节课我们学习了哪些知识内容?
2.你认为学习集合有什么意义?
3.比较列举法与描述法的优缺点。
(五)布置作业
作业:习题1.1A组:2、3、4.
作业的布置是要突出本节课的重点——集合概念的理解以及集合的表示法,让学生对数学符号的适用在课外进行延伸和巩固。
说板书
在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。在左侧的知识要点主要列出了集合、元素的概念、元素的特性:确定性,互异性,无序性,和集合的表示法:列举法和描述法。
以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。对这节课的设计,我始终在努力贯彻一教师为主导,以学生为主题,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力为指导思想,利用各种教学手段激发学生的学习兴趣,体现了对学生创新意识的培养。
2025年高中数学的教案篇15
一、教学目标
【知识与技能】
进一步掌握直线方程的各种形式,会根据条件求直线的方程。
【过程与方法】
在分析问题、动手解题的过程中,提升逻辑思维、计算能力以及分析问题、解决问题的能力。
【情感、态度与价值观】
在学习活动中获得成功的体验,增强学习数学的兴趣与信心。
二、教学重难点
【重点】根据条件求直线的方程。
【难点】根据条件求直线的方程。
三、教学过程
(一)课堂导入
直接点明最近学习了直线方程的多种形式,这节课将练习求直线的方程。
(二)回顾旧知
带领学生复习回顾直线斜率的求法,以及直线方程的点斜式、两点式和一般式。
为了加深学生的运用和理解,继续引导学生思考,是否有其他解题思路。预设大部分学生能够想到用点斜式进行计算。教师肯定学生想法并组织学生动手计算,之后请学生上黑板板演。
预设学生有多种解题方法,如AB、AC所在直线方程用两点式求解,BC所在直线方程用点斜式求解。
学生板演后教师讲解,点明不足,提示学生,计算结束后要记得将所求得方程整理为直线方程的一般式。
师生总结解题思路:求直线所在方程时,若给出两点坐标,在符合条件的情况下,可直接套用公式,也可利用点斜式进行求解,注意一题多解的情况。
(四)小结作业
小结:学生畅谈收获。
作业:完成课后相应练习题,根据已知条件求直线的方程。